Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 604: 120776, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34098055

RESUMO

Novel nanocomposite system based on mesoporous silica nanoparticles (MSNs) noncovalently modified with hexadecyltriphenylphosphonium bromide (HTPPB) has been prepared, thoroughly characterized and used for encapsulation of model cargo Rhodamine B (RhB). The high encapsulation efficacy of this dye by HTPPB-modified mesoporous particles was demonstrated by spectrophotometry and thermography techniques. The bioavailability of MSN@HTPPB was testified. Cytotoxicity assay revealed that a marked suppression of M-HeLa cancer cells (epithelioid carcinoma of the cervix) occurs at concentration of 0.06 µg/mL, while the higher viability of Chang liver normal cell line was preserved in the concentration range of 0.98-0.06 µg/mL. Hemolysis assay demonstrated that only 2% of red blood cells are destructed at ~ 30 µg/mL concentration. This allows us to select the most harmless compositions based on MSN@HTPPB with minimal side effects toward normal cells and recommend them for the development of antitumor formulations. Fluorescence microscopy technique testified satisfactory penetration of HTPPB-modified carriers into M-HeLa cells. Importantly, modification of the MSN with HTPPB is shown to promote efficient delivery to mitochondria. To the best of our knowledge, it is one of the first successful examples of noncovalent surface modification of the MSNs with lipophilic phosphonium cation that improves targeted delivery of loads to mitochondria.


Assuntos
Nanopartículas , Dióxido de Silício , Cátions , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Células HeLa , Humanos , Mitocôndrias , Porosidade
2.
Colloids Surf B Biointerfaces ; 140: 269-277, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26764110

RESUMO

Gemini surfactants with hexadecyl tails and hydroxyethylated head groups bridged with tetramethylene (G4), hexamethylene (G6) and dodecamethylene (G12) spacers were shown to self-assemble at the lower critical micelle concentration compared to their conventional m-s-m analogs. The lipoplex formation and the plasmid DNA transfer into different kinds of host cells were studied. In the case of eukaryotic cells, high transfection efficacy has been demonstrated for DNA-gemini complexes, which increased as follows: G6G4>G12 has been obtained in the case of transformation of bacterial cells with plasmid DNA-gemini complexes, mediated by electroporation technique. Solely G6 shows transformation efficacy exceeding the control result (uncomplexed DNA), while the inhibitory effect occurs for G4 and G12. Analysis of physico-chemical features of single surfactants and lipoplexes shows that compaction and condensation effects change as follows: G6

Assuntos
Técnicas de Transferência de Genes , Compostos de Amônio Quaternário/química , Tensoativos/química , Transfecção/métodos , DNA/química , DNA/genética , Eletroporação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Força Atômica , Estrutura Molecular , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/genética , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Termodinâmica
3.
J Colloid Interface Sci ; 367(1): 327-36, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22134214

RESUMO

A systematic study of the aggregation behavior of alkyltriphenylphosphonium bromides (TPPB-n; n=8, 10, 12, 14, 16, 18; here n is the number of carbon atoms in alkyl groups) in aqueous solutions has been carried out and compared with trimethyl ammonium bromides (TMAB-n). Critical micelle concentrations (cmcs) of TPPB-n and TMAB-n decrease with the number of carbon atoms with the slope parameter of ca.0.3. The low cmcs and effective solubilization power toward Orange OT indicate high micellization capacity of phosphonium surfactants. The low counterion binding parameter ß is revealed for TPPB-10 and TPPB-12, while high counterion binding of ≥80% is observed for high TPPB-n homologs. Values of the surface potential ψ calculated on the basis of pK(a) shifts of p-nitrophenols is similar for both series and monotonously increase with alkyl chain length. Several points indicate non-monotonic changes within TPPB-n series. There are peculiarities of the tensiometry and solubilization plots for high homologs and above mentioned increases in counterion binding on transiting from low to high molecular weight surfactants. Differences in aggregation behavior between TPPB and TMAB series and between low and high homologs can be due to the specific structural character of the TPP(+) cation, which is supported by X-ray data.


Assuntos
Brometos/química , Micelas , Compostos Organofosforados/química , Compostos de Amônio Quaternário/química , Tensoativos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Potenciometria , Solubilidade
4.
J Phys Chem B ; 111(51): 14152-62, 2007 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-18052275

RESUMO

New amphiphilic pyrimidinic macrocycles (APMs) with two (APM-1) and three (APM-2) decyl tails have been synthesized by quaternization of the bridged N. Complex examination of the APM-based systems with the help of tensiometry, conductometry, dynamic light scattering, and UV and NMR spectroscopy provides evidence for their aggregation. Calculations based on surface tension isotherms and on packing parameter considerations make it possible to assume a lamellar packing of macrocycles when aggregating. Marked differences in the aggregation behavior of APM-1 and APM-2 have been found. The additives of polyethylenimine (PEI) exert little influence on the critical micelle concentration (cmc) of APM-1, while in the APM-2/PEI systems there occurs a pronounced decrease in the cmc and also a ca. 2-fold decrease in the surface area per molecule. The APM-based assemblies are explored as nanoreactors for the hydrolysis of O-alkyl O-p-nitrophenyl (chloromethyl)phosphonates (alkyl = ethyl, hexyl). The kinetic study reveals a minor rate effect of the APM-1-based systems. In the APM-2-based systems an acceleration of the hydrolysis of both phosphonates occurs as compared to the uncatalyzed process. Within the APM-2 --> APM-2/PEI --> APM-2/PEI/La(III) series, due to the cooperative contributions of the supramolecular, polymer, and homogeneous catalysis, an increase in the catalytic effect is observed from 30 times to 3 orders of magnitude as compared to that of the basic hydrolysis of the substrates.

5.
Langmuir ; 23(6): 3214-24, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17291018

RESUMO

Effective nanoreactors based on polyethyleneimines (PEIs) for the hydrolytic cleavage of O-alkyl O-p-nitrophenyl chloromethylphosphonates (alkyl = ethyl, hexyl) and di(p-nitrophenyl)phosphate were developed in conformity with the idea of modeling the polyfunctional catalytic mechanism of enzymes. A step-by-step modification of the single PEI solution by additives with their own catalytic activities (sodium dodecyl sulfate and lanthanum salt) gave rise to a marked improvement in the reaction efficiency. A 104-106-fold acceleration of the reaction compared to the aqueous basic hydrolysis of the substrates was achieved in the sodium dodecyl sulfate-polyethyleneimine-La(III) ternary system. This system can be considered to be metallomicelles immobilized on a hydrophilic polymer matrix. When the PEI immobilized on silica gel was used as a catalyst, the full completion of the reaction was achieved for 100 min under mild conditions, while the half-life of the reaction in a comparable homogeneous regime exceeds 100 h.


Assuntos
Nanopartículas , Polietilenoimina/química , Catálise , Enzimas/química , Hidrólise , Lantânio/química , Micelas , Modelos Químicos , Tamanho da Partícula , Polímeros/química , Potenciometria , Sais/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...